Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2+-dependent calmodulin-binding domains.

Identifieur interne : 002503 ( Main/Exploration ); précédent : 002502; suivant : 002504

Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2+-dependent calmodulin-binding domains.

Auteurs : Vaka S. Reddy [États-Unis] ; Gul S. Ali ; A S N. Reddy

Source :

RBID : pubmed:12825696

Descripteurs français

English descriptors

Abstract

Ca2+ and calmodulin (CaM), a key Ca2+ sensor in all eukaryotes, have been implicated in defense responses in plants. To elucidate the role of Ca2+ and CaM in defense signaling, we used 35S-labeled CaM to screen expression libraries prepared from tissues that were either treated with an elicitor derived from Phytophthora megasperma or infected with Pseudomonas syringae pv. tabaci. Nineteen cDNAs that encode the same protein, pathogen-induced CaM-binding protein (PICBP), were isolated. The PICBP fusion proteins bound 35S-CaM, horseradish peroxidase-labeled CaM and CaM-Sepharose in the presence of Ca2+ whereas EGTA, a Ca2+ chelator, abolished binding, confirming that PICBP binds CaM in a Ca2+-dependent manner. Using a series of bacterially expressed truncated versions of PICBP, four CaM-binding domains, with a potential CaM-binding consensus sequence of WSNLKKVILLKRFVKSL, were identified. The deduced PICBP protein sequence is rich in leucine residues and contains three classes of repeats. The PICBP gene is differentially expressed in tissues with the highest expression in stem. The expression of PICBP in Arabidopsis was induced in response to avirulent Pseudomonas syringae pv. tomato carrying avrRpm1. Furthermore, PICBP is constitutively expressed in the Arabidopsis accelerated cell death2-2 mutant. The expression of PICBP in bean leaves was also induced after inoculation with avirulent and non-pathogenic bacterial strains. In addition, the hrp1 mutant of Pseudomonas syringae pv. tabaci and inducers of plant defense such as salicylic acid, hydrogen peroxide and a fungal elicitor induced PICBP expression in bean. Our data suggest a role for PICBP in Ca2+-mediated defense signaling and cell-death. Furthermore, PICBP is the first identified CBP in eukaryotes with four Ca2+-dependent CaM-binding domains.

DOI: 10.1023/a:1023993713849
PubMed: 12825696


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2+-dependent calmodulin-binding domains.</title>
<author>
<name sortKey="Reddy, Vaka S" sort="Reddy, Vaka S" uniqKey="Reddy V" first="Vaka S" last="Reddy">Vaka S. Reddy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. reddy@lamar.colostate.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ali, Gul S" sort="Ali, Gul S" uniqKey="Ali G" first="Gul S" last="Ali">Gul S. Ali</name>
</author>
<author>
<name sortKey="Reddy, A S N" sort="Reddy, A S N" uniqKey="Reddy A" first="A S N" last="Reddy">A S N. Reddy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12825696</idno>
<idno type="pmid">12825696</idno>
<idno type="doi">10.1023/a:1023993713849</idno>
<idno type="wicri:Area/Main/Corpus">002519</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002519</idno>
<idno type="wicri:Area/Main/Curation">002519</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002519</idno>
<idno type="wicri:Area/Main/Exploration">002519</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2+-dependent calmodulin-binding domains.</title>
<author>
<name sortKey="Reddy, Vaka S" sort="Reddy, Vaka S" uniqKey="Reddy V" first="Vaka S" last="Reddy">Vaka S. Reddy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. reddy@lamar.colostate.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ali, Gul S" sort="Ali, Gul S" uniqKey="Ali G" first="Gul S" last="Ali">Gul S. Ali</name>
</author>
<author>
<name sortKey="Reddy, A S N" sort="Reddy, A S N" uniqKey="Reddy A" first="A S N" last="Reddy">A S N. Reddy</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (microbiology)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Binding Sites (genetics)</term>
<term>Calcium (pharmacology)</term>
<term>Calmodulin (metabolism)</term>
<term>Calmodulin-Binding Proteins (genetics)</term>
<term>Calmodulin-Binding Proteins (metabolism)</term>
<term>Cyclopentanes (pharmacology)</term>
<term>DNA, Complementary (chemistry)</term>
<term>DNA, Complementary (genetics)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxylipins (MeSH)</term>
<term>Phaseolus (genetics)</term>
<term>Phaseolus (microbiology)</term>
<term>Phytophthora (growth & development)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Protein Binding (drug effects)</term>
<term>Pseudomonas (growth & development)</term>
<term>Salicylic Acid (pharmacology)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (composition chimique)</term>
<term>ADN complémentaire (génétique)</term>
<term>Acide salicylique (pharmacologie)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (microbiologie)</term>
<term>Calcium (pharmacologie)</term>
<term>Calmoduline (métabolisme)</term>
<term>Cyclopentanes (pharmacologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Liaison aux protéines (effets des médicaments et des substances chimiques)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Mutation (MeSH)</term>
<term>Oxylipines (MeSH)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Phaseolus (génétique)</term>
<term>Phaseolus (microbiologie)</term>
<term>Phytophthora (croissance et développement)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines de liaison à la calmoduline (génétique)</term>
<term>Protéines de liaison à la calmoduline (métabolisme)</term>
<term>Pseudomonas (croissance et développement)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sites de fixation (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Calmodulin-Binding Proteins</term>
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN complémentaire</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Phytophthora</term>
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Liaison aux protéines</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Binding Sites</term>
<term>Phaseolus</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Phytophthora</term>
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Arabidopsis</term>
<term>Maladies des plantes</term>
<term>Phaseolus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de liaison à la calmoduline</term>
<term>Sites de fixation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calmodulin</term>
<term>Calmodulin-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Maladies des plantes</term>
<term>Phaseolus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Phaseolus</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calmoduline</term>
<term>Protéines de liaison à la calmoduline</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide salicylique</term>
<term>Calcium</term>
<term>Cyclopentanes</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Calcium</term>
<term>Cyclopentanes</term>
<term>Hydrogen Peroxide</term>
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Oxylipins</term>
<term>Sequence Analysis, DNA</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Données de séquences moléculaires</term>
<term>Mutation</term>
<term>Oxylipines</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ca2+ and calmodulin (CaM), a key Ca2+ sensor in all eukaryotes, have been implicated in defense responses in plants. To elucidate the role of Ca2+ and CaM in defense signaling, we used 35S-labeled CaM to screen expression libraries prepared from tissues that were either treated with an elicitor derived from Phytophthora megasperma or infected with Pseudomonas syringae pv. tabaci. Nineteen cDNAs that encode the same protein, pathogen-induced CaM-binding protein (PICBP), were isolated. The PICBP fusion proteins bound 35S-CaM, horseradish peroxidase-labeled CaM and CaM-Sepharose in the presence of Ca2+ whereas EGTA, a Ca2+ chelator, abolished binding, confirming that PICBP binds CaM in a Ca2+-dependent manner. Using a series of bacterially expressed truncated versions of PICBP, four CaM-binding domains, with a potential CaM-binding consensus sequence of WSNLKKVILLKRFVKSL, were identified. The deduced PICBP protein sequence is rich in leucine residues and contains three classes of repeats. The PICBP gene is differentially expressed in tissues with the highest expression in stem. The expression of PICBP in Arabidopsis was induced in response to avirulent Pseudomonas syringae pv. tomato carrying avrRpm1. Furthermore, PICBP is constitutively expressed in the Arabidopsis accelerated cell death2-2 mutant. The expression of PICBP in bean leaves was also induced after inoculation with avirulent and non-pathogenic bacterial strains. In addition, the hrp1 mutant of Pseudomonas syringae pv. tabaci and inducers of plant defense such as salicylic acid, hydrogen peroxide and a fungal elicitor induced PICBP expression in bean. Our data suggest a role for PICBP in Ca2+-mediated defense signaling and cell-death. Furthermore, PICBP is the first identified CBP in eukaryotes with four Ca2+-dependent CaM-binding domains.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12825696</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>07</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>52</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2003</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2+-dependent calmodulin-binding domains.</ArticleTitle>
<Pagination>
<MedlinePgn>143-59</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Ca2+ and calmodulin (CaM), a key Ca2+ sensor in all eukaryotes, have been implicated in defense responses in plants. To elucidate the role of Ca2+ and CaM in defense signaling, we used 35S-labeled CaM to screen expression libraries prepared from tissues that were either treated with an elicitor derived from Phytophthora megasperma or infected with Pseudomonas syringae pv. tabaci. Nineteen cDNAs that encode the same protein, pathogen-induced CaM-binding protein (PICBP), were isolated. The PICBP fusion proteins bound 35S-CaM, horseradish peroxidase-labeled CaM and CaM-Sepharose in the presence of Ca2+ whereas EGTA, a Ca2+ chelator, abolished binding, confirming that PICBP binds CaM in a Ca2+-dependent manner. Using a series of bacterially expressed truncated versions of PICBP, four CaM-binding domains, with a potential CaM-binding consensus sequence of WSNLKKVILLKRFVKSL, were identified. The deduced PICBP protein sequence is rich in leucine residues and contains three classes of repeats. The PICBP gene is differentially expressed in tissues with the highest expression in stem. The expression of PICBP in Arabidopsis was induced in response to avirulent Pseudomonas syringae pv. tomato carrying avrRpm1. Furthermore, PICBP is constitutively expressed in the Arabidopsis accelerated cell death2-2 mutant. The expression of PICBP in bean leaves was also induced after inoculation with avirulent and non-pathogenic bacterial strains. In addition, the hrp1 mutant of Pseudomonas syringae pv. tabaci and inducers of plant defense such as salicylic acid, hydrogen peroxide and a fungal elicitor induced PICBP expression in bean. Our data suggest a role for PICBP in Ca2+-mediated defense signaling and cell-death. Furthermore, PICBP is the first identified CBP in eukaryotes with four Ca2+-dependent CaM-binding domains.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Reddy</LastName>
<ForeName>Vaka S</ForeName>
<Initials>VS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. reddy@lamar.colostate.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ali</LastName>
<ForeName>Gul S</ForeName>
<Initials>GS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reddy</LastName>
<ForeName>A S N</ForeName>
<Initials>AS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AF438330</AccessionNumber>
<AccessionNumber>AF439853</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002147">Calmodulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002148">Calmodulin-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C475573">pathogen-induced calmodulin-binding protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002147" MajorTopicYN="N">Calmodulin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002148" MajorTopicYN="N">Calmodulin-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027805" MajorTopicYN="N">Phaseolus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011549" MajorTopicYN="N">Pseudomonas</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12825696</ArticleId>
<ArticleId IdType="doi">10.1023/a:1023993713849</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1994 Jan 20;367(6460):281-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8121494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jan;45(2):145-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11289506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 31;277(22):19304-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11904292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Feb;13(2):437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Apr;42(6):807-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4800-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9114072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Oct;103(2):407-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 May;11(5):781-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Apr;51(6):803-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 10;275(45):35457-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10956642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Apr;13(4):470-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10755311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Aug 17;503(2-3):185-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11513879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Dec;5(6):568-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12393021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jun 22;292(5525):2281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Aug;12(8):1393-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 16;250(4983):1002-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17746925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1998 Jan 1;18(1):164-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9412497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Nov;121(3):705-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10557218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jan;113(1):269-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Apr 1;18(7):1996-2007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10202162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Aug;23(4):441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10972870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 May 1;355(Pt 3):663-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11311128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2001 Feb 5;160(3):381-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11166425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Mar 28;416(6879):447-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Jul;126(2):375-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8034741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Aug;15(4):563-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9753781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 28;275(4):2305-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 May;6(5):695-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7913642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Sep 23;3(10):RESEARCH0056</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12372144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Oct;44(3):245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11199386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Apr 15;17(8):2273-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Nov 18;79(4):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7954825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 22;277(12):9840-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Apr;9(4):653-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Sep;10(9):2605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1714383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Feb;10(2):255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 8;277(6):4206-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Mar 1;314 ( Pt 2):497-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9323-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10900264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Sep;25(5):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9364909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9892708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1996 Jul;21(7):267-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Calcium. 1998 Feb-Mar;23 (2-3):115-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9601606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Jan;5(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Mar;3(3):309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1840913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1999 Aug;12(8):712-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10432637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Aug;12(8):1477-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1993 Jul-Aug;6(4):453-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8400375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Aug;12(8):1425-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Apr;10(4):585-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9548984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Oct 15;15(20):5690-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8896462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Mar;8(3):555-564</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 9;92(10):4150-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7753777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):4097-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2751-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Jul;268(14 ):3916-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11453984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Oct 15;264(29):17156-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2507540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):771-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11149948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Oct 15;20(20):5556-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1809-1819</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jul 24;273(30):19235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9668112</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ali, Gul S" sort="Ali, Gul S" uniqKey="Ali G" first="Gul S" last="Ali">Gul S. Ali</name>
<name sortKey="Reddy, A S N" sort="Reddy, A S N" uniqKey="Reddy A" first="A S N" last="Reddy">A S N. Reddy</name>
</noCountry>
<country name="États-Unis">
<region name="Colorado">
<name sortKey="Reddy, Vaka S" sort="Reddy, Vaka S" uniqKey="Reddy V" first="Vaka S" last="Reddy">Vaka S. Reddy</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002503 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002503 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12825696
   |texte=   Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2+-dependent calmodulin-binding domains.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12825696" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024